Co rre ct ed Pr oo f V Variational Integrators

نویسنده

  • Melvin Leok
چکیده

Introduction 12 Geometric numerical integrators are numerical meth13 ods that preserve the geometric structure of a continu14 ous dynamical system (see, e.g., [8, 11], and references 15 therein), and variational integrators provide a system16 atic framework for constructing numerical integrators 17 that preserve the symplectic structure and momen18 tum, of Lagrangian and Hamiltonian systems, while 19 exhibiting good energy stability for exponentially long 20 times. 21 In many problems, the underlying geometric struc22 ture affects the qualitative behavior of solutions, and 23 as such, numerical methods that preserve the geometry 24 of a problem typically yield more qualitatively accu25 rate simulations. This qualitative property of geometric 26 integrators can be better understood by viewing a 27 numerical method as a discrete dynamical system that 28 approximates the flow map of the continuous system 29 (see, e.g., [1, 21]), as opposed to the traditional view 30 that a numerical method approximates individual tra31 jectories. In particular, this viewpoint allows questions 32 about long-time stability to be addressed, which would 33 otherwise be difficult to answer. 34

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Un co rre ct ed Pr oo f T Thread - Level Speculation

Definition  Thread-Level Speculation (TLS) refers to an environ ment where execution threads operate speculatively,  performing potentially unsafe operations, and tem porarily buffering the state they generate in a buffer or  cache. At a certain point, the operations of a thread are  declared to be correct or incorrect. If they are correct,  the thread commits, merging the state i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012